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Effects of pressure gradients on turbulent
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In most practical situations, turbulent premixed flames are ducted and, accordingly,
subjected to externally imposed pressure gradients. These pressure gradients may
induce strong modifications of the turbulent flame structure because of buoyancy
effects between heavy cold fresh and light hot burnt gases. In the present work, the
influence of a constant acceleration, inducing large pressure gradients, on a premixed
turbulent flame is studied using direct numerical simulations.

A favourable pressure gradient, i.e. a pressure decrease from unburnt to burnt
gases, is found to decrease the flame wrinkling, the flame brush thickness, and the
turbulent flame speed. It also promotes counter-gradient turbulent transport. On the
other hand, adverse pressure gradients tend to increase the flame brush thickness
and turbulent flame speed, and promote classical gradient turbulent transport. As
proposed by Libby (1989), the turbulent flame speed is modified by a buoyancy term
linearly dependent on both the imposed pressure gradient and the integral length
scale lt.

A simple model for the turbulent flux ũ′′c′′ is also proposed, validated from simula-
tion data and compared to existing models. It is shown that turbulent premixed flames
can exhibit both gradient and counter-gradient transport and a criterion integrating
the effects of pressure gradients is derived to differentiate between these regimes. In
fact, counter-gradient diffusion may occur in most practical ducted flames.

1. Introduction
Most ducted turbulent flames are subjected to external pressure gradients. Com-

pared to ‘free’ flames, i.e. turbulent flames without externally imposed pressure gradi-
ents, the combination of the external pressure gradients with the large density changes
found in premixed flames may lead to strong modifications of the flame structure.
These modifications are mainly due to the differential buoyancy effects between cold
heavy reactants and hot light products. They affect turbulent transport along with
many characteristics of the flame itself, such as flame speed, thickness, wrinkling, and
local structure. Pressure gradients are also a key mechanism for the counter-gradient
turbulent transport described below. Accordingly, studying the effects of pressure
gradients on premixed turbulent flames is an important issue both for fundamental
understanding of turbulent combustion and for modelling.

Using the assumption of single-step chemistry, the mass fractions of the reactive
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species are all linearly related (Williams 1985) and may be expressed in terms of a
single reduced mass fraction: the reaction progress variable c. The progress variable
ranges from zero to unity in the fresh and fully burnt gases, respectively. Using the
classical Favre decomposition, a quantity q can be split into a mass-weighted mean,
q̃ ≡ ρq/ρ, and a turbulent fluctuation, q′′. The transport equation for the mean
reaction progress variable c̃ may be written as

∂ρc̃

∂t
+
∂ρũic̃

∂xi
+
∂ρu′′i c

′′

∂xi
= −∂Jk

∂xk
+ ω̇c (1.1)

where ρ is the mass density, ui is the flow velocity, Jk is the molecular diffusion flux,
ω̇c is the volumetric production rate of the chemical reaction, and the overbar denotes
conventional Reynolds ensemble-averaging. Equation (1.1) has the form of a standard
turbulent transport equation where the rate of change of c̃ results from a balance
between convection by the mean flow, convection by the turbulent flow, molecular
diffusion, and chemical reaction. The contribution of molecular diffusion is usually
neglected for high-Reynolds-number flows. In (1.1), two terms need to be modelled:
the mean reaction rate ω̇c and the turbulent transport ρu′′i c

′′ terms. The first term has
received considerable attention in recent years and various models have been derived
and incorporated into practical codes for turbulent combustion. The second term,
however, has received considerably less attention and is generally described with a
simple classical gradient eddy-viscosity model:

ρu′′i c
′′ = ρũ′′i c

′′ = −µt
σc

∂c̃

∂xi
(1.2)

where µt denotes the turbulent dynamic viscosity and σc a turbulent Schmidt number.
Both theoretical and experimental research (Bray et al. 1981; Bray, Moss & Libby

1982; Shepherd, Moss & Bray 1982) have found evidence of counter-gradient trans-
port in some turbulent flames: in these flames the turbulent flux ρu′′i c

′′ and the c̃
gradient ∂c̃/∂xi have the same sign in opposition with the prediction of (1.2). This is
generally due to the differential effect of pressure gradients on cold reactants and hot
products. Recent studies based on direct numerical simulations of turbulent premixed
flames without externally imposed pressure gradients (Trouvé et al. 1994; Rutland
& Cant 1994) have confirmed that counter-gradient diffusion was found in simula-
tions, but that classical gradient diffusion was also possible. A criterion indicating
the presence of gradient or counter-gradient diffusion in atmospheric flames has been
derived by Veynante et al. (1997). This criterion leads to a reduced number called
NB:

NB =
τ

2α(u′/s0l )
(1.3)

where s0l is the laminar flame speed, u′ is the RMS turbulent velocity, τ is the heat
release factor defined as τ = Tb/Tu − 1, with T being the temperature and indices u
and b referring to the fresh and burnt gases, respectively. The term α is an efficiency
function of order unity, introduced by Veynante et al. (1997) to take into account the
reduced ability of small turbulent vortices to affect the flame front. This function is
plotted on figure 1. For low values of NB , typically NB 6 1 (flames in relatively large
turbulence intensity), gradient diffusion is obtained. For large values of NB counter-
gradient diffusion occurs. In fact, counter-gradient turbulent diffusion is promoted
by heat release and thermal expansion (increasing values of τ) whereas increased
turbulence intensity tends to induce gradient transport.
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Figure 1. A DNS-based estimate of the efficiency function α, introduced by Veynante et al. (1997)
to take into account the reduced ability of small turbulent vortices to affect the flame front. The
function α is plotted as a function of the length-scale ratio lt/δ

0
l where lt is the turbulence integral

length scale and δ0
l the thermal thickness of the laminar flame.

The work of Veynante et al. (1997) was performed for free flames without externally
imposed pressure gradients or volume forces, such as gravity. Since turbulent transport
in flames appears to be controlled by a dynamic balance between fresh and burnt
gases, confined flames subjected to strong pressure gradients should exhibit a large
sensitivity to these gradients. For example, we expect that imposing a pressure
gradient on a turbulent flame exhibiting counter-gradient diffusion may lead to a
gradient-diffusion situation. This change may affect the flame brush thickness, the
turbulent flame speed and finally the complete structure of the turbulent flame brush,
as described in a number of papers such as Masuya & Libby (1981); Bray et al.
(1982).

Our objective in this study is to explore the effects of pressure gradients on premixed
turbulent flames using direct numerical simulations. We will first recall the physics
of this phenomenon and how pressure gradients may be included in a simulation
for reacting flows in §2. We will also describe the most general theory to treat the
problem, i.e. the Bray–Moss–Libby formulation. The simulation used for this work
will be described in §3. Section 4 will present the structure of laminar flames submitted
to pressure gradients. Section 5 will present results for turbulent flames. Finally, §6 will
describe a model for the turbulent flux incorporating the effects of pressure gradients
and a comparison with experimental results by Shepherd et al. (1982).

2. Pressure gradients in premixed flames
2.1. The Bray–Moss–Libby approach for turbulent transport

Bray, Champion & Libby (1989) have proposed a simple algebraic closure for the
reaction term ω̇c in (1.1), but focus their attention on the turbulent transport term

ρũ′′i c
′′. In the Bray-Moss-Libby (BML) approach, the flame is analysed as a thin flame

sheet, or ‘flamelet’, separating fresh reactants (c = 0) and fully burnt products (c = 1).
This assumption leads to a bimodal probability density for the progress variable c
and the turbulent flux is then expressed, according to Bray (1980), as:

ρũ′′i c
′′ = ρc̃(1− c̃)(uib − uiu) (2.1)

where uiu and uib are the conditional mean velocities within the unburnt and burnt
gases, respectively. The occurrence of counter-gradient transport may be easily ex-
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plained from this expression. Let us consider a left-travelling flame in the xi-direction
(∂c̃/∂xi > 0). Thermal expansion and the associated flow acceleration through the
flame, along with favourable buoyancy and/or pressure gradients, will tend to make
uib larger than uiu, thereby promoting counter-gradient turbulent diffusion of c̃, result-

ing in ρũ′′i c
′′ > 0. Under the BML approach, the second and third turbulent moments

such as ρũ′′i u
′′
j , ρ

˜u′′i u′′j c′′, and ρ ˜u′′i u′′j u′′k may be directly expressed as functions of con-
ditioned quantities in fresh and in burnt gases. Nevertheless, conditional quantities
such as (uib − uiu) are difficult to close and an alternative approach must be pursued

for estimating the turbulent transport ρũ′′i c
′′. A simple algebraic closure based on the

eddy-viscosity concept cannot be used here. In the BML model, closure is achieved by
a transport equation for ρu′′i c

′′ (Bray 1980, 1990; Bray et al. 1989). A brief derivation
of this equation is provided here, including a constant volume force Fvi and a constant
acceleration Γi. These terms will both induce a mean pressure gradient in the flow as
shown below. Start from the momentum equation

∂ρui

∂t
+
∂ρuiuj

∂xj
= −∂P

∂xi
+ Fvi + ρΓi +

∂τik

∂xk
(2.2)

and the equation for the progress variable c

∂ρc

∂t
+
∂ρuic

∂xj
= −∂Jk

∂xk
+ ω̇c (2.3)

where P , τij and Jk are respectively the pressure, the viscous stress tensor and the
molecular diffusive flux of c. Multiplying (2.2) by c and (2.3) by ui, then adding and
averaging the two resulting equations leads to a transport equation for ρũic. In a
similar way, adding the averaged version of (2.2) multiplied by c̃ and the averaged
form of (2.3) multiplied by ũi leads to a transport equation for ρũic̃. Subtracting the

two resulting equations provides a transport equation for the turbulent flux ρũ′′i c
′′:

∂ρũ′′i c
′′

∂t︸ ︷︷ ︸
(I)

+
∂ρũj ũ

′′
i c
′′

∂xj︸ ︷︷ ︸
(II)

= −
∂ρ ˜u′′j u′′i c′′
∂xj︸ ︷︷ ︸
(III)

− ρũ′′i u′′j
∂c̃

∂xj︸ ︷︷ ︸
(IV)

− ρũ′′j c′′
∂ũi

∂xj︸ ︷︷ ︸
(V)

− c′′ ∂p
∂xi︸ ︷︷ ︸

(VI)

− c′′ ∂p
′

∂xi︸ ︷︷ ︸
(VII)

− u′′i
∂Jk

∂xk︸ ︷︷ ︸
(VIII)

− c′′ ∂τik
∂xk︸ ︷︷ ︸

(IX)

+ ρũ′′i ω̇c︸ ︷︷ ︸
(X)

+ c′′Fvi︸︷︷︸
(XI)

. (2.4)

Bray et al. (1981) studied each term in (2.4) and proposed some approximations.
For example, they explored the role of the mean pressure gradient term (VI) assuming
that this term is so large that only cross-dissipation terms (VIII and IX) can provide
a balance, leading to a turbulent flux directly proportional to the pressure gradient.
All terms in (2.4) may be extracted from direct numerical simulations (Trouvé et al.
1994; Veynante et al. 1997) to validate these analysis.

Two main comments arise concerning (2.4). First, the mean pressure gradient
appears explicitly in the source term (VI) (c′′∂p/∂xi). Under the BML analysis, c′′

may be easily closed (Masuya & Libby 1981):

c′′ = c− c̃ = τ
c̃(1− c̃)
1 + τc̃

(2.5)

which is exact for an infinitely thin flame front. This quantity is always positive so
that ∂P/∂xi controls the sign of (VI): a pressure decrease from fresh to burnt gases
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tends to promote counter-gradient diffusion (or positive values of the turbulent flux

ρũ′′i c).
Another important feature deals with volume and buoyancy forces. A constant

volume force Fvi leads to a source term in (2.4), with a similar form for the pressure
gradient term, whereas a constant acceleration force Γi does not. However, the
introduction of Fvi or Γi also has a direct influence on the mean pressure gradient
∂P/∂x (term VI) and terms (VI) and (XI) should be grouped together to describe the
effect of Fvi or Γi. We start from the averaged momentum transport equation:

∂ρũi

∂t
+
∂ρũiũj

∂xj
+
∂ρũ′′i u

′′
j

∂xj
= −∂P

∂xi
+ Fvi + ρΓi +

∂τik

∂xk
. (2.6)

For sufficiently large volume and/or buoyancy forces, the leading-order terms in (2.6)
are these forces and the mean pressure gradient so that the hydrostatic approximation
provides a good estimate of the pressure gradient:

∂P

∂xi
= Fvi + ρΓi. (2.7)

Therefore, to first order, term (VI + XI) becomes

− c′′
(
∂P

∂xi
− Fvi

)
. = −c′′ρΓi. (2.8)

Both Fvi and Γi induce a mean pressure gradient in the flow field (see (2.2)). However,

only Γi will directly affect the balance of ρũ′′i c
′′ (2.4) because, contrary to a constant

acceleration, a constant volume force does not introduce buoyancy phenomena.
Accordingly, our study of the influence of the mean pressure gradient on turbulent
transport will be conducted using a constant acceleration Γi.

2.2. Physical and numerical issues related to pressure gradients in flames

Theoretical models indicate that both normal and tangential pressure gradients influ-
ence turbulent flames. Masuya & Libby (1981) have studied confined oblique flames
and have shown that, for a given pressure gradient, turbulent transport in normal
and transverse directions are correlated. As a first step, we will only consider pressure
gradients in the mean propagation direction x1: only Fv1 = Fv and Γ1 = Γ may be
non-zero. All pressure gradients are scaled by the pressure gradient inside the laminar
flame zone:

∇P ∗ =
∇P
|∇Plam|

where |∇Plam| ' ρu(s0l )2τ/δ0
l (2.9)

where δ0
l is the unstrained laminar flame thickness which is obtained from the

maximum temperature gradient δ0
l = (Tb−Tu)/Max(dT/dx) and ρu is the fresh gases

density.
The pressure gradient ∇Plam is created by dilatation inside the flame zone. It is large

but, due to the thinnish flame front, the overall pressure jump ∆P between fresh and
burnt gases remains small: ∆P/P ' τγ(s0l /a)2 where the ratio of flame to sound speeds,
s0l /a, is of the order of 0.001. On the other hand, volume forces or external pressure
gradients are imposed over distances much larger than the flamelet thickness and will
overcome the effect of dilatation in turbulent flame brushes. These effects and their
relative importance in various flames may be quantified in terms of two quantities:
the reduced external pressure gradient ∇Pext, and the reduced mean pressure gradient
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Figure 2. Pressure gradients in (a) a free flame (∇Pext = 0);
(b) a flame with imposed pressure gradient.

∇Pmean. We consider these gradients positive when the pressure increases when going
from the fresh to the burnt gases. Figures 2(a) and 2(b) illustrate how these gradients
may be estimated in a turbulent flame brush of thickness lb with and without an
external pressure gradient. With no external pressure gradient, corresponding to
figure 2(a), the pressure jump across the flame will be slightly modified by flow
divergence and spread over the flame brush thickness lb so that the mean pressure
gradient in the flame brush will be ∇Pmean ' ∇Plamδ0

l /lb. In the case of an externally
imposed pressure gradient, corresponding to figure 2(b), ∇Pmean will be of the order of
∇Pext everywhere in the flow: although the maximum instantaneous pressure gradient
may still be found at the flame, ∇Pext will be dominant over the flame brush thickness.

Pressure gradients in real flames are imposed either by flame confinement, as in
ducted flows, or by gravity. Typical values of ∇Plam, ∇Pext and ∇Pmean are given in
table 1 for different turbulent premixed flames along with their dimensional values.
In the case of ‘free’ flames, the pressure gradient is imposed by the flame itself. The
ducted flame data correspond to the experiment of Shepherd et al. (1982). The flame
brush thickness is estimated by the integral length scale lt = 1 cm.

These estimations indicate that the largest pressure gradients will be obtained in
ducted flames. Gravity alone will create smaller effects. At this point, it is worth
discussing the differences between flames subjected to a constant acceleration, such
as gravity, or to a constant pressure gradient. In the first case, the induced pressure
gradient is ρΓ , which is different in the fresh and burnt gases, see below. For both
cases, however, the pressure gradient will induce differential acceleration for fresh
and burnt gas pockets thus leading to a modification of turbulent transport. Most
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s0l δ0
l |∇Plam| |∇Pext|

(m s−1) (m) Tb/Tu (Pa m−1) (Pa m−1) |∇Pext| |∇Pmean|
Free flame 0.32 0.0005 6.5 1100 0 0 0.05
1 g flame 0.32 0.0005 6.5 1100 ' 10 0.009 0.059
Ducted flame 0.32 0.0005 6.5 1100 1000 0.91 0.96

Table 1. Typical pressure gradients for a propane/air flame (P = 1 atm, φ = 1.2)

authors therefore expect similar effects from constant acceleration and from constant
pressure gradients.

There are at least three ways to introduce pressure gradients in a direct numerical
simulation of premixed turbulent flames: impose a constant volume force Fv; impose a
pressure gradient through the boundary conditions; or impose a constant acceleration
Γ , i.e. a volume force which is a function of the local density Fg = ρΓ , where Γ = g
in the case of gravity. All techniques produce an imposed pressure gradient, see the
Appendix. However, the first solution leads to a flow where the pressure gradient

∂P/∂x is compensated everywhere by the volume force Fv and has no effect on ρũ′′c′′.
The second solution was investigated, but is difficult to implement in a simulation if
the mean flow remains one-dimensional, which is required for statistical purposes. In
this paper, we will use only the third solution with various values of the acceleration
Γ .

3. Direct numerical simulation of premixed flames with pressure gradients
The present direct numerical simulations have been performed with a two-dimen-

sional version of NTMIX. A complete description of this code may be found in
Haworth & Poinsot (1992) or Poinsot & Lele (1992). It solves the fully compress-
ible Navier–Stokes equations with a single finite-rate irreversible reaction Fuel →
Products. Variable density as well as viscosity and transport coefficients are taken
into account. The conservation equations solved by the simulation are

∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (3.1)

∂ρui

∂t
+

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+ ρΓi +

∂τij

∂xj
, (3.2)

∂ρE

∂t
+

∂

∂xi
[(ρE + p)ui] = ρΓiui +

∂

∂xi
(ujτij) +

∂

∂xi
(λ
∂T

∂xi
) + Qẇ, (3.3)

∂(ρỸ )

∂t
+

∂

∂xi
(ρỸ ui) =

∂

∂xi
(ρD∂Ỹ

∂xi
)− ẇ, (3.4)

where

ρE =
1

2
ρ

3∑
k=1

u2
k +

p

γ − 1
, (3.5)

τij = µ

(
∂ui

∂xj
+
∂uj

∂xi
− 2

3
δij
∂uk

∂xk

)
, (3.6)

ẇ = ẇR/Y
o
R = ρỸ B exp

(
−β/α

)
exp

(
−β(1− θ)

1− α(1− θ)

)
. (3.7)
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Re = aLx/ν Le P ro Ta/Tb Tb/Tu b s0l /a δ0
l /Lx Nx

12000 1 0.75 8 4 0.76 0.0159 0.027 257

Table 2. Fixed parameters for direct numerical simulations of flames subjected to pressure
gradients. The speed of sound and kinematic viscosity in the fresh gases are denoted by a and ν.

In these expressions ρ is the mass density, p is the thermodynamic pressure, ρE is
the total energy density, and Q designates the heat of reaction per unit mass of fresh
mixture (Q = −∆hofY o

R where ∆hof is the heat of reaction per unit mass of reactant).
Γi are the i-component of the constant acceleration Γ . The reduced temperature is
Θ = (T −Tu)/(Tb−Tu) where Tu is the fresh gas temperature and Tb is the adiabatic
flame temperature. The activation temperature is Ta. B is the pre-exponential factor
and the coefficients α and β are the temperature factor and the reduced activation
energy, respectively,

α = (Tb − Tu)/Tb; β = αTa/Tb. (3.8)

The mass fraction of the reactants YR is non-dimensionalized by the initial mass

fraction of reactants Y o
R in the fresh gases: Ỹ = YR/Y

o
R . This varies from 1 in the

fresh gases to 0 in the burnt gases.
We assume that the gas mixture is a perfect gas with constant molar mass and a

specific heat ratio γ = 1.4. The thermal conductivity λ and the diffusion coefficient D
are obtained from the viscosity coefficient µ according to

λ = µCp/Pr and D = µ/(ρSc) (3.9)

where the Prandtl number Pr and the Schmidt number Sc are constant. As a conse-
quence the Lewis number Le = Sc/Pr is also constant. The viscosity µ is a function
of temperature: µ = µu(T/Tu)

b.
The size of the computational domain is Lx × Ly with Nx ×Ny grid points. In the

present simulations, Nx = 257 and Ny = 1025. The aspect ratio of the box is Ly/Lx
= 6.66. Run parameters are summarized in table 2.

4. Laminar flames subjected to pressure gradients
First, one-dimensional laminar flames are computed for τ = 3 without and with

an imposed constant acceleration Γ . Introducing the reduced acceleration, g∗ =

Γδ0
l /(s

0
l )

2
, which may be viewed as the inverse of a Froude number, four values of

g∗ are considered here: g∗ = 0 (no imposed acceleration), g∗ = −6.25 (favourable
pressure gradient), g∗ = 3.12 and g∗ = 6.25 (adverse pressure gradient). Pressure
profiles are plotted as a function of the downstream locations in figure 3(a) for the

four g∗ values. The pressure gradient ∇P = ρΓ is ρu(s
0
l )

2
g∗/δ0

l in the fresh gases and

ρb(s
0
l )

2
g∗/δ0

l in the burnt gases so that the reduced pressure gradient ∇P ∗ is g∗/τ in
the fresh gases and g∗/τ(τ+ 1) in the burnt gases. As expected, pressure gradients are
constant for each side of the flame front but decrease by a factor Tb/Tu = τ+ 1 = 4
between fresh and burnt gases due to density changes. The pressure drop due to
thermal expansion is apparent for the g∗ = 0 case.

For all g∗ values considered, the laminar flame structure is not affected by the
imposed acceleration: flame thickness, reaction rate and mass fraction profiles remain
unchanged. Nevertheless, due to the pressure gradient, a weak change in density,
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Figure 3. (a) Pressure and (b) density profiles in one-dimensional laminar flames without and with
imposed acceleration g∗ plotted as a function of the reduced downstream coordinate x/Lx. g

∗ = 0
( ); g∗ = −6.25 ( ); g∗ = 3.12 ( ); g∗ = 6.25 ( ). In (b) the flame position
corresponds to the change in the curve slopes.

similar to the one described in the Appendix, is observed inside the fresh or burnt
gases, see figure 3(b), but remains negligible compared to the one induced by thermal
expansion. The same trend is noticed for the flow velocity which is modified by about
3% by the pressure gradient and a factor of 4 by thermal expansion.

5. Turbulent flames subjected to pressure gradients
The previously computed one-dimensional laminar flames are used as initial so-

lutions for two-dimensional flame-turbulence interaction simulations (figure 4). A
Passot–Pouquet turbulence spectrum, with given turbulence intensity u′ and integral
length scale lt, is superimposed on the combustion field (Haworth & Poinsot 1992).
Two sets of numerical simulations have been conducted. The first set (runs A–C)
starts from a high turbulence level (u′0/s

0
l = 5) and a zero pressure gradient (g∗ = 0)

case (run A). This flame exhibits gradient transport as expected by the value of the
number NB = 0.6 (equation (1.3)). A favourable pressure gradient (i.e. g∗ < 0) is then
imposed for runs B and C to reach a counter-gradient diffusion situation. The second
set (runs D–F) starts from a low turbulence level (u′0/s

0
l = 2) with a zero pressure gra-

dient case (run D) which corresponds to a counter-gradient situation, with an initial
number NB = 1.5. Under an adverse pressure gradient (i.e. g∗ > 0), the flow is found
to exhibit gradient turbulent transport for runs E and F. Numerical parameters are

displayed on table 3 where g∗ is the reduced imposed acceleration (g∗ = Γδ0
l /(s

0
l )

2
).
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Fresh gases
+ turbulence

Initially laminar
flame front

Burnt gases

Periodic boundary
conditions

y

x
dP/dx

Figure 4. Configuration for the numerical simulations.

Case u′0/s
0
l lt/δ

0
l g∗ Nx Ny

A 5 3.5 0 257 1025
B 5 3.5 −3.12 257 1025
C 5 3.5 −6.25 257 1025
D 2 3.5 0 257 1025
E 2 3.5 3.12 257 1025
F 2 3.5 6.25 257 1025

Table 3. Numerical parameters for direct numerical simulations of two-dimensional
turbulent flames

The values of ∇Pmean were chosen of the order of the pressure gradient found in the
experiment of Shepherd et al. (1982).

Since we will use a BML formulation to analyse DNS results and the BML theory
uses a flamelet assumption, it is useful to described the regime of combustion for
the DNS of table 3. In a Borghi–Barrère diagram, these regimes are slightly above
the Klimov–Williams limit but well below the limit proposed by Poinsot, Veynante
& Candel (1991) suggesting that they satisfy the flamelet assumption. DNS confirm
that all flame fronts in table 3 remain ‘flamelet-like’: the front is thin and connected,
no quenching takes place and flamelet concepts may be used to analyse data.

An additional point is related to two-dimensional versus three-dimensional DNS. A
comparison (Veynante et al. 1997) shows that similar conclusions are obtained when
considering turbulent diffusion fluxes (i.e. the occurrence of counter-gradient diffu-
sion). However, since two-dimensional DNS allow a much larger range of parameters
to be investigated, it was used for the present work.

5.1. Effect of the mean pressure gradient on the turbulent flame structure

Instantaneous temperature and vorticity fields are displayed in figure 5(a) for an
initial turbulence level u′0/s

0
l = 5 without (case A) and with (case C) an imposed

mean pressure gradient. Corresponding pressure fields are displayed in figure 5(b).
The flame structures are quite different. Owing to the favourable pressure gradient
(∂P/∂x < 0), the wrinkling of the flame front is less and the turbulent flame brush is
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(a)
(i) (ii)

(b)
(i) (ii)

Figure 5. (a) Superimposed instantaneous temperature and vorticity fields at time t = 2.7δ0
l /s

0
l .

Initial turbulence level u′0/s
0
l = 5. (i) No imposed pressure gradient (g∗ = 0. – case A); (b)

favourable imposed pressure gradient (g∗ = −6.25 – case C). 0 6 (T − Tu)/(Tb − Tu) 6 1 and
−6.2 6 ωδ0

l /s
0
l 6 6.8. The temperature T is reduced using the fresh (Tu) and the burnt (Tb) gases

temperatures. The vorticity ω is reduced with the laminar flame time δ0
l /s

0
l . (b) As (a) but for the

instantaneous pressure field (i) 0.70 6 P/(ρua2) 6 0.76; (ii) 0.71 6 P/(ρua2) 6 0.79. The pressure P
is reduced using the unburnt gases density ρu and the sound speed a.

thinner. Despite similar minimum and maximum values, the pressure field is mainly
dominated by vortices in case A whereas the pressure gradient, imposed by the
constant acceleration Γ , is clearly apparent for case C.

Close-up views of the temperature and vorticity fields of figure 5(a) are displayed
in figure 6. As previously described, the flame front is less wrinkled in case C despite
a similar turbulence distribution in the fresh gases.

Instantaneous temperature and vorticity fields are displayed for cases D and F
in figure 7. The initial turbulence level is lower (u′0/s

0
l = 2): without an externally

imposed pressure gradient, this flow exhibits a counter-gradient turbulent transport as
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(i)

(ii)

Figure 6. Superimposed instantaneous temperature and vorticity fields at time t = 2.7δ0
l /s

0
l . Zoom

from figure 5(a). Initial turbulence level u′0/s
0
l = 5. (i) No imposed pressure gradient (g∗ = 0 – case

A); (ii) favourable imposed pressure gradient (g∗ = −6.25 – case C).

predicted by the criterion of equation (1.3): NB = 1.5. In case F, an adverse pressure
gradient is imposed and a transition towards gradient transport is expected. The flame
front wrinkling is also somewhat increased by the adverse pressure gradient, due to
the differential acceleration induced by buoyancy between fresh and burnt gases.

5.2. Effect of the mean pressure gradient on global turbulent flame characteristics

The global turbulent flame characteristics, namely the turbulent flame speed ST and
flame brush thickness δT , are plotted in figures 8 and 9 as a function of reduced time
(t/tF where tF = δ0

l /s
0
L) for different values of g∗. As expected from the previous flow-

field visualizations, a favourable pressure gradient, i.e. ∂P/∂x < 0, which is generally
encountered in practical situations of confined turbulent flames, leads to a thinner
turbulent flame brush and a lower turbulent flame speed. The decrease in ST may
reach 30%. On the other hand, an adverse pressure gradient, i.e. ∂P/∂x > 0, induces
an increase in flame brush thickness and a higher turbulent flame speed.

From theoretical analysis, Libby (1989) has shown that, under steady-state condi-
tions, a constant acceleration Γ adds a linear buoyancy term to the turbulent flame



Pressure gradient effects on premixed flames 95

(i) (ii)

Figure 7. Superimposed instantaneous temperature and vorticity fields at time t = 2.7δ0
l /s

0
l . Initial

turbulence level u′0/s
0
l = 2. (i) No imposed pressure gradient (g∗ = 0 – case D); (ii) adverse imposed

pressure gradient (g∗ = 6.25 – case F). 0 6 (T − Tu)/(Tb − Tu) 6 1 and −2.6 6 ωδ0
l /s

0
l 6 2.8. The

temperature T is reduced using the fresh (Tu) and the burnt (Tb) gases temperatures. The vorticity
ω is reduced with the laminar flame time δ0

l /s
0
l .
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Figure 8. Reduced turbulent flame speed ST /s
0
l plotted as a function of the reduced time

t/tf = s0l t/δ
0
l , where tf = δ0

l /s
0
l is a flame time, for different values of g∗. (a) Initial turbulent

level u′0/s
0
l = 5: cases A ( ), B ( ) and C ( ); (b) initial turbulent level u′0/s

0
l = 2:

cases D ( ), E ( ) and F ( ); symbols correspond to estimates from Libby theory:
(a) cases B (�) and C (•); (b) cases E (�) and F (•).
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Figure 9. As figure 8 but for reduced turbulent flame thickness δT /δ
0
l . The turbulent flame brush

is determined from the maximum value of the c gradient (δt = 1/Max
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∂c/∂x

)
)

speed ST :
ST

u′0
=

2

(1 + λ)1/2
+

τ

(1 + τ) (1 + λ)

Γlt

s0l u
′
0

(5.1)

where τ is the heat release factor and λ an empirical constant chosen to be λ = 0.017.
This expression may be recast as

ST (g∗) = ST (g∗ = 0) + βg∗s0l
lt

δ0
l

(5.2)

where ST (g∗ = 0) is the turbulent speed of a free flame (with no imposed pressure
gradient) and β = τ/(1 + τ)(1 + λ) a constant.

In the present DNS, unsteady effects are important and Libby’s analysis may be
extended using a variable β. The function β depends on time and is estimated as the
averaged value of βAC and βDF respectively computed from cases A and C and cases
D and F as

β(t) =
βAC(t) + βDF (t)

2
(5.3)

with βAC(t) =
SCT (t)− SAT (t)

g∗Cs
0
l lt/δ

0
l

and βDF (t) =
SFT (t)− SDT (t)

g∗Fs
0
l lt/δ

0
l
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Figure 10. The function β, defined by expression (5.4), is plotted versus the reduced time t.

where SXT denotes the turbulent flame speed in case X, g∗C = −6.25 and g∗F = 6.25.
The laminar flame speed s0l and the length-scale ratio lt/δ

0
l are identical for all cases

and given in table 3. The function β(t) is plotted on figure 10. Then, extending the
theory developed by Libby (1989), the turbulent flame speed may be estimated as

ST
(
g∗, lt, t

)
= ST

(
g∗ = 0, lt, t

)
+ β(t)s0l g

∗ lt

δl
. (5.4)

Expression (5.4) is used to evaluate turbulent flame speed for cases B, C, E and F.
The agreement with DNS data is very good as shown on figure 8, corresponding to the
Libby theory, even under non-steady conditions. Accordingly, a constant acceleration
Γ tends to modify the turbulent flame speed by adding a linear buoyancy term
proportional to the product g∗lt.

One may note that, according to Libby’s theory (equation (5.1)), the value of the
constant β should be 0.74 (τ = 3 and λ = 0.017). Figure 10 displays values about
25 times lower. This discrepancy may be explained by the unsteady effects in our
simulations. As shown in figure 10, β(t) does not reach a steady value whereas Libby’s
theory assumes constant turbulence characteristics. Following Libby, the turbulent
flame speed without imposed constant acceleration is given by (5.1):

ST

s0l
=

2

(1 + λ)1/2

u′0
s0l
, (5.5)

leading to reduced turbulent flame speeds ST/s
0
l = 9.9 for case A and ST/s

0
l = 5.9

for case D, values higher than the ones displayed on figure 8. On the other hand,
estimating the empirical constant λ from (5.5) and DNS-extracted values of the
turbulent flame speed ST leads to λ ≈ 25 corresponding to a value of β about 25
times lower that the value predicted by Libby’s theory and in agreement with our
numerical data.

5.3. Turbulent transport ρũ′′c′′

The transverse profiles of the turbulent flux ρũ′′c′′ as a function of the mean progress
variable c̃ for cases A and C at various times are shown in figure 11. Case A, without an

imposed mean pressure gradient, is clearly of gradient type, i.e. ρũ′′c′′ < 0, whereas the
imposed favourable pressure gradient leads to a counter-gradient turbulent transport.
This finding is in agreement with the work of Bray et al. (1982) and is expected from
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Figure 11. Transverse profiles of the turbulent flux ρũ′′1c
′′ plotted as a function of the mean progress

variable c̃ for different reduced time steps t+ = t/tf where tf = δ0
l /s

0
l is a flame time. Initial

turbulence level u′0/s
0
l = 5. t+ = 0.6 ( ); 0.9 ( ); 1.2 ( ); 1.5 ( ); 1.8 ( ).

(a) No imposed pressure gradient (g∗ = 0 – case A); (b) favourable imposed pressure gradient
(g∗ = −6.25 – case C). Turbulent fluxes are non-dimensionalized by ρus
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Figure 12. Total turbulent flux
∫ +∞
−∞ ρũ′′1c

′′dx plotted as a function of the reduced time t/tf where

tf = δ0
l /s

0
l is a flame time. (a) Initial turbulence level u′0/s

0
l = 5: cases A ( ), B ( ) and

C ( ); (b) initial turbulence level u′0/s
0
l = 2: cases D ( ), E ( ) and F ( ). Total

turbulent fluxes are non-dimensionalized by ρus
0
l δ

0
l .

(2.4). Even in clearly counter-gradient situations, the turbulent flux ρũ′′c′′ is always
negative, or of gradient type, at the leading edge of the flame brush, where c̃→ 0. As
shown by Bray and his coworkers, these gradient zones allow flame stabilization.

The total turbulent flux, i.e.
∫ +∞
−∞ ρũ

′′
1c
′′dx, is plotted as a function of the reduced

time for the different simulations in figure 12. Favourable pressure gradients promote
counter-gradient diffusion and a reduction of both the turbulent flame speed ST and
the turbulent flame thickness δT . On the other hand, adverse pressure gradients lead
to an increase in ST and δT and induce gradient turbulent transport.

5.4. Analysis of the ρũ′′c′′ transport equation

All terms in the transport equation for ρũ′′c′′, (2.4), may be obtained from direct
numerical simulations. A typical DNS evaluation of terms (I)–(X) appearing in the c̃-
flux budget of (2.4) is presented in figure 13(a) for case D. The figure also displays the
imbalance (i.e. the difference between the sums of the right- and left-hand-side terms)
that was found when numerically closing the c̃-flux budget in (2.4). This imbalance
is due to inherent numerical errors involved in the simulations as well as in the post-
processing of the data. Its magnitude remains small (less than 3% of the maximum
term), which suggests that the simulations can be used to analyse the variations of
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Figure 13. Variations of the different terms appearing in the c̃-flux budget (equation. (2.4)) across the
turbulent flame brush. (a) Case D: counter-gradient turbulent diffusion and no imposed pressure
gradient. Reduced time is ts0l /δ

0
l = 2.1. (b) Case F: gradient turbulent diffusion induced by an

adverse mean pressure gradient. Reduced time ts0l /δ
0
l = 2.1. (c) Case C: counter-gradient turbulent

diffusion induced by a favourable mean pressure gradient. Reduced time is ts0l /δ
0
l = 2.7. Terms are

non-dimensionalized by ρu
(
s0l
)2
/δ0

l .

second-order moments. For instance, figure 13(a) shows that the dissipation terms
(VIII) and (IX), which are generally modelled together, are of the same order and act
to promote gradient diffusion. On the other hand, pressure terms (VI) and (VII), and
the velocity–reaction rate correlation (X), strongly act to promote counter-gradient
diffusion. The two source terms due to mean progress variable gradient (IV) and mean
velocity gradient (V) tend to decrease the turbulent fluxes as expected and accordingly,
in the present counter-gradient situation, act to promote gradient turbulent diffusion.
The mean pressure gradient term (term VI) corresponds to the pressure jump across
the flame brush (see figure 14):

− c′′ ∂p
∂x

= −(c− c̃)∂p
∂x
≈ τ c̃(1− c̃)

1 + τc̃

ρuτ(s
0
l )

2

δT
. (5.6)

The fluctuating pressure term (VII) cannot be neglected as generally assumed in the
models proposed to close the transport equation (2.4).
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Figure 14. Comparison between direct numerical simulation data for cases C ( ), D ( )
and F ( ) and modelled mean pressure gradient source term ( ) from (5.7) in the the c̃-flux

transport equation (2.4). Pressure gradients are non-dimensionalized by ρuτ
(
s0l
)2
/δ0

l . Reduced time

is ts0l /δ
0
l = 2.1.

A similar analysis is now performed for case F, where, due to the imposed adverse
pressure gradient, the turbulent diffusion becomes of gradient type, as indicated in
figure 13(b). As expected, the mean pressure gradient term tends to promote gradient
turbulent diffusion and corresponds to the imposed pressure gradient. Once again,
the fluctuating pressure term (VII) is not negligible and acts to counterbalance the
mean pressure gradient term (VI). In fact, the combined term (VI) + (VII) is mainly
negative and corresponds to a gradient diffusion. The reaction term acts to promote
counter-gradient diffusion.

The budget of the transport equation for ρũ′′1c
′′ for case C is presented in figure 13(c).

The favourable mean pressure gradient acts to promote counter-gradient turbulent
diffusion from term (VI). Once again, term (VII) tends to counterbalance term (VI).
For such a situation, Bray et al. (1982) and Libby (1989) propose neglecting the
pressure fluctuation effects (term VII). Bray et al. (1982) assume that only the cross-
dissipation terms (VIII + IX) can provide a balance for the mean pressure term
(VI). In fact, from our simulation, the mean pressure term (VI) is balanced by the
sum of the three contributions: the cross-dissipation term (VIII + IX), the pressure
fluctuation term (VII) that cannot be neglected, and the source term due to gradients
of c̃ (IV).

The mean pressure gradient across the flame brush may be simply modelled as the
sum of two contributions: the imposed pressure gradient, and the pressure jump due

to thermal heat release. As a result, the source term (VI) in ρũ′′c′′ becomes

− c′′ ∂p
∂x

= −(c− c̃)∂p
∂x
≈ τ c̃(1− c̃)

1 + τc̃

[
ρuτ(s

0
l )

2

δT
− ρΓ

]
(5.7)

where ρΓ corresponds to the imposed pressure gradient. This expression is verified
in the present simulations (figure 14).

As pointed out, the fluctuating pressure term (VII) in (2.4) acts to counterbalance
the mean pressure gradient term (VI) for cases C and F and is of the same order of
magnitude. This quite surprising result may be easily explained as follows. Neglecting
the pressure jump at the flame front and assuming that the instantaneous local
pressure gradient is given by

∂p

∂x
= ρΓ (5.8)
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leads to the following estimates for terms (VI) and (VII) in (2.4):

−c′′ ∂p
∂x
≈ −ρc′′Γ , (5.9)

−c′′ ∂p
′

∂x
≈ −ρ′c′′Γ . (5.10)

As c′′ is always positive (see (2.5)), the sign of the mean pressure term (VI) is opposite
to the sign of the imposed acceleration Γ . On the other hand, when c increases
(c′′ > 0), the density ρ decreases (ρ′ 6 0). Accordingly, ρ′c′′ is negative and the
fluctuating pressure term (VII) has the same sign as the acceleration Γ . Pressure

terms (VI) and (VII) in the balance equation for the turbulent fluxes ρũ′′c′′ act in
an opposite way with a sign depending on Γ . Obviously, there are limits to this
qualitative approach and the estimates of (5.9) and (5.10) are too crude, leading to
a zero total contribution of terms (VI) and (VII) (ρc′′Γ + ρ′c′′Γ = ρc′′Γ = 0) that
is not observed in DNS data. However two main conclusions arise from this finding.
First, the fact that the fluctuating pressure term (VII) tends to counterbalance the
mean pressure term (VI) is due to the use of a constant acceleration Γ and should
not be observed for a constant pressure gradient. Second, terms (VI) and (VII) are

strongly coupled and have to be modelled together as c′′∂p/∂x. The modelling of term
(VI+VII) will be discussed later with reference to DNS data (§6.3).

6. Theoretical analysis and modelling
6.1. Model for turbulent flux without pressure gradient

In this section, we first recall the derivation of a model for the turbulent flux of
the mean progress variable c̃. Details may be found in Veynante et al. (1997). This
derivation starts from a relation proposed by Bidaux & Bray (1994, unpublished)
expressing the flame-front averaged velocity, 〈ui〉s as a weighted average of the mean
unburnt and burnt gases conditional velocities:

〈ui〉s = (1−K) uiu +Kuib (6.1)

where K is a constant (0 6 K 6 1) related to the iso-c level used to defined the
flame location. This expression assumes a linear variation of the mean flow velocity
across the flame. Furthermore, using the classical BML framework, we can easily
relate unconditional to conditional statistics:

ũi = (1− c̃)uiu + c̃uib. (6.2)

Equations (6.1) and (6.2) lead to

〈u′′i 〉s = 〈ui〉s − ũ = (K − c̃) (uib − uiu) . (6.3)

From (2.1), the previous relation leads to

〈u′′i 〉s =
(K − c̃)
c̃ (1− c̃) ũ

′′
i c
′′. (6.4)

Thus, the turbulent diffusion velocity, 〈u′′i 〉s, is simply related to the turbulent flux of
c̃. This expression is used by Bidaux & Bray (1994, unpublished) to relate the turbulent
flux of flame surface density Σ, 〈u′′i 〉sΣ, to the turbulent flux of mean progress variable

c̃. This expression may be used to derive an estimate of ũ′′i c
′′ via a model for the mean

velocity fluctuation 〈u′′i 〉s: considering limiting cases of low turbulence levels, where
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flow dynamics is mainly controlled by thermal expansion across the flame brush, and
high turbulence levels, where the turbulent velocities dominate the flow induced by
thermal expansion, Veynante et al. (1997) proposed the following expression for 〈u′′1〉s
where index 1 corresponds to the direction normal to the flame:

〈u′′1〉s = (K − c̃)
(
τs0l − 2αu′

)
, (6.5)

leading to

ũ′′1c
′′ = c̃ (1− c̃)

(
τs0l − 2αu′

)
(6.6)

and to the criterion (1.3). Here u′ denotes the r.m.s. velocity fluctuations and α is an
efficiency function to take into account the low ability of small turbulent vortices to
affect the flame front. The function α, depending on the length-scale ratio lt/δ

0
l , may

be found in Veynante et al. (1997) or on figure 1. In the present simulations, α ≈ 0.5

6.2. Model for turbulent flux with pressure gradient

Our objective in this section is to incorporate pressure gradient effects in the pre-
vious analysis. Pressure gradients induce differential buoyancy effects between cold
heavy reactants and light hot products. We quantify this buoyancy effect through a
characteristic velocity UB (̃c) which is simply added to the two velocities used in (6.5):
the velocity induced by the flame, (K − c̃)τs0l ; and the velocity induced by turbulence,
2(K − c̃)αu′,

〈u′′1〉s = (K − c̃)
(
τs0l − 2αu′

)
+UB (̃c). (6.7)

The estimation of UB (̃c) is done as follows. In the fresh gases, UB(0) = Ub
B

corresponds to the relative speed of a pocket of burnt gas (density ρb, diameter l).
Similarly a velocity UB(1) = Uu

B will be associated with the movement of unburnt gas
pockets in the burnt products. Assuming an equilibrium between buoyancy and drag
forces (Batchelor 1967), Ub

B is determined from

1
2
ρuCxS

(
Ub
B

)2
= (ρb − ρu)VΓ (6.8)

where V is the volume of the pocket of burnt gases in the fresh gases. S corresponds
to the projected surface of the pocket on a plane normal to the velocity direction.
Following the Stokes law, the drag coefficient Cx is given by

Cx =
24

Re
=

24

Ub
Bl/ν

(6.9)

where ν is the dynamic viscosity in the fresh gases and l a characteristic length scale
of the pocket of burnt gases. Then

Ub
B =

1

12ν

ρb − ρu
ρu

V l

S
Γ = − 1

12ν

τ

τ+ 1

V l

S
Γ . (6.10)

For a pocket of fresh gases with density ρu and diameter l embedded in burnt gases
the same analysis leads to a relative displacement speed Uu

B:

Uu
B =

1

12νb

ρu − ρb
ρb

V l

S
Γ =

1

12νb
τ
V l

S
Γ (6.11)

where νb is the kinematic viscosity in the burnt gases.
Assuming a linear variation of the buoyancy velocity UB (̃c) with c̃ between the
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flame leading and trailing edges leads to

UB (̃c) ≈ 1

12νu

τ

τ+ 1

V l

S
Γ
[(

1 + (τ+ 1)1−n) c̃− 1
]

(6.12)

where the kinematic viscosity ratio has been estimated as

νu

νb
≈
(
Tu

Tb

)n
=

(
1

τ+ 1

)n
(6.13)

with n = 1.76.
For 3 6 τ 6 6, we have 0.74 6 1/

(
1 + (τ+ 1)1−n) 6 0.8 which is of the order

of magnitude of the constant K . In a first step, equation (6.12) is simply rewritten:
K = 1/

(
1 + (τ+ 1)1−n), leading to

UB (̃c) ≈ 1

12νu

τ

K (τ+ 1)

V l

S
Γ (̃c−K) , (6.14)

which may be rewritten as

UB (̃c) ≈ Ref

12K

τ

τ+ 1

V l

S
(
δ0
l

)2
s0l g
∗ (̃c−K) (6.15)

where Ref = δ0
l s

0
l /νu is a flame Reynolds number.

Two comments arise from this result.
First, the non-dimensionalized ratio V l/S

(
δ0
l

)2
may be viewed as a form factor of

the gas pocket of size l. In a first step, this ratio may be assumed to be proportional

to
(
lt/δ

0
l

)2
where lt is the integral length scale, a rough estimate of the flame front

wrinkling scale. In our simulations, the ratio
(
lt/δ

0
l

)2
is kept constant. Nevertheless,

the dependence of the buoyancy velocity UB on the integral length scale lt remains an
open question which is difficult to investigate using DNS because the simulations are
limited to a weak range of the ratio lt/δ

0
l . One may expect that for large values of the

integral length scale lt, the wrinkling of the flame front remains quite low. Accordingly,
the assumption of a pocket of fresh (respectively burnt) gases in burnt (fresh) gases is
probably not valid and expression (6.15) overestimates the buoyancy-induced velocity.

In the case of a sphere of fluid 1 moving freely under gravity in a fluid 2, Batchelor
proposes a correction factor C to the velocity induced by buoyancy:

C =
µ2 + µ1

µ2 + 3
2
µ1

(6.16)

where µ1 and µ2 denotes the dynamic viscosities of fluid 1 and 2 respectively. This
correction is neglected here and is incorporated in K and the modelling constant a.

Then, from (6.4) and (6.7), a simple model for the turbulent flux ũ′′1c
′′ is

ũ′′1c
′′ = c̃ (1− c̃)

(
τs0l − 2αu′ − aRefg

∗

12K

τ

τ+ 1

(
lt

δ0
l

)2

s0l

)
(6.17)

where a model constant a is introduced to take into account the various limitations
of the simplified analysis proposed here.

A comparison of equations (2.1), (6.6) and (6.17) shows that the effect of a constant
acceleration Γ may be modelled by adding a buoyancy slip velocity ∆Ub

s to the slip
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Figure 15. Slip velocity (u1b− u1u) plotted as a function of the mean progress variable c̃ for various
values of the reduced acceleration g∗. (a) Initial turbulent level u′0/s

0
l = 5: cases A ( ), B

( ) and C ( ); (b) initial turbulent level u′0/s
0
l = 2: cases D ( ), E ( ) and F

( ). Velocity is non-dimensionalized using the laminar flame speed s0l . Profiles are plotted for
a reduced time ts0l /δ

0
l = 2.7.
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Figure 16. (a) Slip velocity [u1b − u1u]
(̃
c = 0.5

)
and (b) buoyancy slip velocity ∆Ub

s estimated from

expression (6.19), are plotted as a function of the reduced acceleration g∗ for two reduced time
steps ts0l /δ

0
l = 2.1 ( ) and ts0l /δ

0
l = 2.7 ( ) and cases A to F. Error bars in (b) provide

an estimation of numerical uncertainties. Velocity is non-dimensionalized using the laminar flame
speed s0l .

velocity (u1b − u1u) obtained without imposed acceleration (g∗ = 0), where

∆Ub
s = −aRefg

∗

12K

τ

τ+ 1

(
lt

δ0
l

)2

s0l . (6.18)

This analysis is well supported by DNS data as shown in figure 15 where the slip
velocity (u1b−u1u), extracted from numerical data, is plotted as a function of the mean
progress variable c̃ for the six cases (A–F). The slip velocity is almost constant for
a mean progress variable c̃ lying between 0.1 and 0.8. In the following, this constant
will be estimated using the value of the slip velocity for c̃ = 0.5. For mean progress
variable values close to c̃ = 0 or c̃ = 1, the slip velocity is affected by sampling
problems. In fact, when c̃ is close to 0 (respectively 1), few samples are available to
estimate u1b (respectively u1u), the mean conditional velocity in burnt (respectively
fresh) gases.

Negative values of the acceleration g∗ (cases B and C) tend to increase ∆Ub
s and

the slip velocity (u1b − u1u) and promote counter-gradient diffusion as expected from
(2.1). On the other hand, positive accelerations (cases E and F) tend to decrease ∆Ub

s

and (u1b − u1u) and promote gradient turbulent transport. The change in slip velocity
seems to be a linear function of g∗. This point is analysed on figure 16(a) where the
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Figure 17. Comparison between DNS data (bold curves) and model predictions (thin curves) from

(6.17) of the turbulent flux ũ′′1c
′′ as a function of the mean progress variable c̃ at reduced time 2.1 for

cases: (a) A ( ), B ( ), C ( ); (b) D ( ), E ( ), F( ). α = 0.5, a = 0.1
and K = 0.8. The characteristic length l is taken equal to the integral length scale lt. Velocity is
non-dimensionalized using the laminar flame speed s0l .

value of the slip velocity (u1b − u1u) for c̃ = 0.5 is plotted as a function of g∗ for
two time steps and the six cases (A–F). A linear decrease of (u1b − u1u)̃c=0.5

with g∗ is
observed. While the slope seems to be independent of the case considered, values of
the slip velocity depend both on the case and the time step considered. All values in
figure 16 collapse on a single line when only the buoyant slip velocity ∆Ub

s , estimated
as

∆Ub
s =

[
(u1b − u1u)− (u1b − u1u)g∗=0

]
(̃c = 0.5), (6.19)

is plotted, as displayed on figure 16(b), showing a clear linear dependence of ∆Ub
s on

the reduced acceleration g∗, as expected from (6.18). From figure 16(a) and assuming
that K = 0.8, a may be estimated as a = 0.1.

Predictions from (6.17) are compared with simulation data for the reduced time 2.1
in figure 17. The efficiency function, α, is a function of the length-scale ratio lt/δl and
is obtained from previous DNS (Veynante et al. 1997) to be about 0.5 for the length-
scale ratio used here. The agreement between numerical data and model predictions
is satisfactory. The influence of the imposed acceleration and the transition between
gradient and counter-gradient transport are well predicted from (6.17).

The same analysis may be extended to the case of an externally imposed pressure
gradient ∂P/∂x, leading to a buoyant velocity

UB (̃c) ≈ τ

12ρuνu

V l

S

(
∂P

∂x

)[(
1 + (τ+ 1)1−n) c̃− 1

]
. (6.20)

The turbulent flux may then be expressed as

ũ′′1c
′′ = c̃ (1− c̃)

(
τs0l − 2αu′ − aτ

2Ref

12K

(
lt

δ0
l

)2

∇p∗s0l

)
(6.21)

where

∇p∗ =

(
∂P

∂x

)
δl

ρuτs
2
l

(6.22)

is the reduced pressure gradient (i.e. the pressure gradient non-dimensionalized by the
pressure gradient across the corresponding laminar flame).
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Figure 19. Acceleration-induced pressure gradient term, −
[
c′′∂p/∂x|g∗ − c′′∂p/∂x|g∗=0

]
plotted as a

function of the mean progress variable c̃. Cases B ( ), C ( ), E ( ) and F ( ).
Bold lines correspond to DNS data and thin lines to model expression (6.26), using C1 = 0.6.

Pressure gradients are non-dimensionalized using ρuτ
(
s0l
)2
/δ0

l . Reduced time is ts0l /δ
0
l = 2.1.

6.3. Analysis of the pressure terms in the balance equation for ρũ′′c′′

The objective is now to propose a simple analysis of the pressure gradient terms

(VI+VII), c′′∂p/∂x in the balance equation (2.4) for the turbulent fluxes ρũ′′c′′. Pressure
gradient terms for cases A and D, without any externally imposed acceleration, are
plotted on figure 18 as a function of the mean progress variable c̃. Although the
turbulence level and the flame brush thickness are greater in case A than in case

D, c′′∂p/∂x is similar in the two cases, showing that the pressure gradient is mainly
controlled by thermal expansion in these two simulations. On the other hand, the

acceleration-induced pressure term, estimated as c′′∂p/∂x|g∗ − c′′∂p/∂x|g∗=0 is mainly
proportional to the imposed acceleration g∗ as shown on figure 19.

The pressure gradient may be viewed as the sum of three contributions: the pres-
sure gradient imposed by the laminar flame, ∇Plam, the externally imposed pressure
gradient, ∇Pext and the pressure gradient induced by turbulent motions, ∇Pturb. Fol-

lowing this simple analysis, the pressure gradient term, c′′∂p/∂x may be split in three
contributions:
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a buoyancy contribution due to thermal expansion and governed by the pressure
gradient ∇Plam imposed by the laminar flame front;

a buoyancy contribution due to the imposed acceleration (and/or imposed pressure
gradient ∇Pext) and probably governed by the buoyancy induced slip velocity ∆Ub

s

previously introduced;
a turbulent contribution: from figure 18, this contribution seems to be negligible

for cases A and D but may become important when the two buoyancy velocities tend
to cancel each other out, a situation encountered in case F.

Then

− c′′ ∂p
∂x

= −c′′ ∂p
∂x

∣∣∣∣
flame

− c′′ ∂p
∂x

∣∣∣∣
∇Pext
− c′′ ∂p

∂x

∣∣∣∣
turb

. (6.23)

Each of these terms may be modelled as follows. Starting from the one-dimensional
steady-state momentum balance equation in the flame framework:

∂

∂x

(
ρu2
)

= −∂p
∂x

(6.24)

where viscous effects are neglected, the pressure gradient term due to the flame may
be estimated as

− c′′ ∂p
∂x

∣∣∣∣
flame

= −c′′ ∇Plam ≈ C1 c′′
ρus

0
l ∆U

th
s

δ0
l

= C1 τ
c̃ (1− c̃)
1 + τc̃

ρuτ
(
s0l
)2

δ0
l

(6.25)

where ∆Uth
s = τs0l is the slip velocity induced by the thermal expansion and C1 is a

model constant.
Viewing the acceleration term in the momentum equation as an equivalent buoyancy

velocity ∆Ub
s leads to the contribution due to the constant acceleration:

− c′′ ∂p
∂x

∣∣∣∣
∇Pext

= −c′′ ∇Pext ≈ C1 τ
c̃ (1− c̃)
1 + τc̃

ρus
0
l ∆U

b
s

δ0
l

(6.26)

where the buoyancy slip velocity ∆Ub
s replaces the thermal expansion slip velocity

∆Uth
s = τs0l . Estimates from (6.26) are plotted on figure 19 using C1 = 0.6. The

agreement with DNS data is very good.
The contribution due to turbulent motions is more difficult to estimate. In a first

step, the following expression is proposed:

− c′′ ∂p
∂x

∣∣∣∣
turb

≈ c′′ ∂
∂x

(
ρũ′′2

)
≈ −C2 ρu τ

c̃ (1− c̃)
1 + τc̃

u′2

lt
. (6.27)

This expression is based on the assumption that turbulent fluctuations are negligible
in the burnt gases compared to the turbulent fluctuations u′ in the fresh gases. The
integral length scale lt is used as an estimate of the flame brush thickness and C2 is
a model constant. The sum of the two contributions (6.25) and (6.27) are plotted on
figure 18 for cases A and D using C2 = 0.25. Even though (6.27) probably slightly
overestimates the turbulent contribution, the agreement with DNS data is satisfactory.

A final estimate, adding the three previous contributions, is then

− c′′ ∂p
∂x
≈ ρu

(s0l )
2

δ0
l

τ
c̃ (1− c̃)
1 + τc̃

[
C1

(
τ+

∆Ub
s

s0l

)
− C2

(
u′

s0l

)2
δ0
l

lt

]
. (6.28)

In (6.28), the contribution of the pressure terms in the balance equation for the
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Figure 20. Comparison between DNS data (bold curves) and model predictions (thin curves) from

(6.28) of the term −c′′∂p/∂x plotted as a function of the mean progress variable c̃ at reduced time
ts0l /δ

0
l = 2.1 for cases: (a) A ( ), B ( ), C ( ); (b) D ( ), E ( ), F( ).

The model constants are C1 = 0.6 and C2 = 0.25. Pressure gradients are non-dimensionalized using

ρuτ
(
s0l
)2
/δ0

l .

turbulent fluxes ρũ′′i c
′′ is split in two components. The first one is described in terms

of slip velocity and incorporates buoyancy effects due to the thermal expansion and
to externally imposed pressure gradients. The second part compares turbulence levels
in burnt and fresh gases. A similar analysis may also be conducted to estimate the
mean pressure gradient ∂p/∂x. As the buoyancy slip velocity is proportional to the
imposed constant acceleration Γ (see (6.15)), the mean pressure gradient is also a
linear function of Γ as expected from (2.7).

The simple model (6.28) may be improved in various ways but is found to be in
good agreement with numerical data as shown on figure 20.

6.4. Discussion

In the previous section, a simple model, based on the assumption of an equilibrium
between buoyancy and drag forces acting on a pocket of fresh gases (respectively
burnt gases) in a medium of burnt (respectively fresh) gases, was derived to describe
the change in turbulent transport induced by a constant acceleration (or a constant
pressure gradient). Two other descriptions of the same phenomenon may be found in
the literature. These approaches are now briefly summarized and discussed.

6.4.1. The Chomiak & Nisbet analysis

In a recent paper, Chomiak & Nisbet (1995) propose an analysis based on argu-
ments similar to the one presented in §6.2. The main difference lies in the description
of the velocities Uu

B (respectively Ub
B) induced by buoyancy effects on a pocket of fresh

(burnt) gases in a medium of burnt (fresh) gases. For Chomiak & Nisbet (1995), the
analysis derived in §6.2 is too crude: pockets of gases cannot be assumed to move as
solid bodies under buoyancy forces because of pocket deformations. Accordingly, they
propose for a pocket of size lt and density ρ0 in a medium of density ρ∞ expressing
the buoyancy-induced velocity u as

u2 = 0.09

(
Γlt |1− ρ0/ρ∞|

α

)
(6.29)

where α is the entrainment coefficient, depending on how the pockets are organized
during the starting period. For a fully developed turbulent flow, a value α ≈ 0.4 is
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retained. Then, (6.10) and (6.11) may be recast as

Ub
B ≈ −b

(
lt|Γ |

τ

τ+ 1

)1/2

, (6.30)

Uu
B ≈ b

(
lt|Γ |τ

)1/2
(6.31)

where b is a model constant having the same sign as the acceleration Γ .
Assuming as previously (equation (6.12)) a linear variation of the buoyancy velocity

UB (̃c) with the mean progress variable c̃ leads to

UB (̃c) ≈ b
(
c̃− 1

1 + (τ+ 1)1/2

)(
1 +

1

(τ+ 1)1/2

)(
|Γ |ltτ

)1/2
, (6.32)

Which may be recast as

UB (̃c) ≈ b (̃c−K)

(
1 +

1

(τ+ 1)1/2

)(
|Γ |ltτ

)1/2
(6.33)

leading to a simple expression for the turbulent flux ũ′′1c
′′:

ũ′′1c
′′ = c̃ (1− c̃)

[
τs0l − 2αu′ − b

(
1 +

1

(τ+ 1)1/2

)(
τ|g∗| lt

δ0
l

)1/2

s0l

]
. (6.34)

The scaling of the buoyancy-induced slip velocity ∆Ub
s is different from the one

introduced in §6.2. In the Chomiak & Nisbet (1995) analysis, the effect of buoyancy
is linearly dependent on the square roots of the acceleration g∗ and the length-scale
ratio lt/δ

0
l . In our analysis, buoyancy effects are linearly related to g∗ and (lt/δ

0
l )

2.
The Chomiak & Nisbet analysis is not sustained by our DNS results (figure 16(b))
where a linear dependence of buoyancy effects g∗ is found. Further investigations are
required concerning the length-scale ratio dependence.

6.4.2. The Bray, Moss & Libby analysis

The Bray, Moss & Libby (1982) analysis is based on a different approach. Starting

from the exact transport equation for the turbulent fluxes ρũ′′i c
′′, (2.4), the authors

assume, for large mean pressure gradients, an equilibrium between the mean pres-
sure gradient term (VI) and dissipation terms (VIII + IX). Then, from modelling
considerations, they propose a buoyancy-induced slip velocity as,

∆Us
B = − τlt

ρuu′
∂p

∂x
, (6.35)

which may be recast as

∆Us
B = −τ2 lt

δ0
l

s0l
u′
∇p∗s0l = −τ2Da∇p∗s0l (6.36)

where the reduced pressure gradient ∇p∗ is given by (6.22). Da is the Damköhler
number and compares turbulent and chemical time scales. Following Bray (1990), the
ratio lts

0
l /u

′ may be viewed as a flame wrinkling length scale Ly .
Comparing this expression with our analysis (6.21) and DNS results leads to several

comments.
(i) The two expressions exhibit the same scaling in pressure gradient ∇p∗ (or in

acceleration g∗) and in heat release factor τ. Nevertheless, our expression predicts
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Case u′0/s
0
l lt/δ

0
l g∗ GD/CGD NΓ

B

A 5 3.5 0 GD 0.60
B 5 3.5 −3.12 transition 0.95
C 5 3.5 −6.25 CGD 1.3
D 2 3.5 0 CGD 1.5
E 2 3.5 3.12 GD 0.60
F 2 3.5 6.25 GD −0.25

Table 4. Estimation of NΓ
B . GD (CGD) refers to gradient (counter-gradient) turbulent diffusion.

an evolution proportional to (lt/δ
0
l )

2 against a linear evolution with lt/δ
0
l in (6.36).

Bray et al. point out that their expression may be recovered by writing an equilib-
rium between buoyancy and drag forces, assuming a drag coefficient Cx inversely
proportional to the velocity. In our analysis, the drag coefficient is assumed to be
inversely proportional to the Reynolds number (Stokes law) and accordingly inversely
proportional to the velocity and the length scale l.

(ii) The dependence of ∆Us
B on u′ predicted from (6.36) should induce a change by

a factor of about 2 in the slope of the curve on figure 16(b) between cases A–C and
D–F. Such a change is not observed in our DNS.

(iii) The Bray et al. analysis is developed assuming an equilibrium between the
mean pressure gradient term (VI) and the dissipation terms (VIII + IX) in (2.4).
This assumption is clearly not validated by our DNS data showing that the pressure
fluctuation term (VII) cannot be neglected, at least when a constant acceleration is
imposed (see §5.4).

6.5. A criterion for gradient/counter-gradient turbulent diffusion

A simple criterion may be derived to predict the occurrence of counter-gradient

turbulent diffusion (i.e. ũ′′1c
′′ > 0) for flames subjected to a constant acceleration g∗,

from (6.17):

NΓ
B =

τ

2αu′/s0l

[
1− a g∗Ref

12K (τ+ 1)

(
l

δl

)2
]
> 1. (6.37)

The effect of the constant acceleration is to introduce a correction to the criterion
(1.3) NB defined by Veynante et al. (1997).

This modified criterion may be estimated from our numerical simulation, using the
initial turbulence values (l = lt, u

′ = u′0), α = 0.5 (from Veynante et al. 1997), a = 0.12
and K = 0.8. Results are summarized and validated in table 4: it appears that NΓ

B > 1
flows indeed exhibit counter-gradient diffusion.

For flames subjected to constant pressure gradients, (6.21) leads to the following
criterion for counter-gradient turbulent transport:

N
p
B =

τ

2αu′/s0l

[
1− aτ∇p

∗Ref

12K

(
l

δl

)2
]
> 1 (6.38)

where

∇p∗ =

(
∂P

∂x

)
δl

ρuτs
2
l

(6.39)

which is the reduced pressure gradient (i.e. the pressure gradient non-dimensionalized
by the pressure gradient across the corresponding laminar flame).
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Case N
p
B ρũ′′1c

′′/ρŨ0

unconfined 0.9 0.0043
confined 20 0.051

Table 5. Estimation of Np
B in the Shepherd et al. (1982) experiment for the confined (with pressure

gradients) and unconfined (without pressure pressure gradients) flames. Experimental estimations

of ρũ′′1c
′′/ρŨ0, where Ũ0 is the reference burner inlet velocity, are provided. u′ ≈ 1 m s−1, lt ≈ 1 cm.

Owing to the large length-scale ratio lt/δ
0
l , the efficiency function α is estimated as α ≈ 1 (Veynante

et al. 1997).

Shepherd et al. (1982) performed experiments on ‘free’ flames (∇Pext = 0) and on
ducted flames (with a favourable pressure gradient ∇Pext = 1000 Pa m−1). Their

measurements of ρũ′′c′′ are summarized in table 5 and their trend is well predicted
by the above criterion: the number NB for the free flame is 0.9 and is close to the
transition between gradient and counter-gradient turbulent diffusion. The experiment
reveals that a small counter-gradient diffusion flux exists in this flame. However, the
confined flame has a number NP

B of 20 and experimental diffusion fluxes are indeed
large and controlled by counter-gradient turbulent transport.

7. Conclusion
The influence of a constant acceleration Γ on a turbulent premixed flame has been

studied by direct numerical simulation. This acceleration Γ induces a mean pressure
gradient across the flame brush, leading to a modification of the turbulent flame
structure due to differential buoyancy mechanisms between heavy cold fresh and light
hot burnt gases. Such a pressure gradient is encountered in practical applications, for
example in ducted flames.

A favourable pressure gradient, i.e. a pressure decrease from unburnt to burnt
gases, is found to decrease flame wrinkling, flame brush thickness, and turbulent
flame speed. A favourable pressure gradient also promotes counter-gradient turbulent
transport. On the other hand, adverse pressure gradients tend to increase the flame
brush thickness and turbulent flame speed, and promote classical gradient turbulent
transport. As proposed by Libby (1989), the turbulent flame speed is modified by a
buoyancy term linearly dependent on the imposed constant acceleration Γ and on
the integral length scale lt.

The balance equation for the turbulent flux ρũ′′c′′ of the Favre-averaged progress
variable c is also analysed. The first results show that the fluctuating pressure term,

(c′′∂p′/∂x), cannot be neglected as generally assumed in models, at least when a
constant acceleration is imposed. Simple models assuming that a high mean pressure
gradient may only be balanced by the cross-dissipation term seem too approximate.

In fact, the mean pressure term c′′∂p/∂x and the fluctuating pressure term c′′∂p′/∂x

have to be modelled together as c′′∂p/∂x. A first analysis is proposed but will need
to be continued to compare simulation data and closure schemes proposed for the

ρũ′′c′′ transport equation.
The analysis developed by Veynante et al. (1997) has been extended to flows with

imposed acceleration and mean pressure gradients. A simple model for the turbulent

flux ũ′′c′′ is proposed, validated from simulation data and compared to existing
models of Chomiak & Nisbet (1995) and Bray–Moss–Libby. The influence of the
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Figure 21. Tests of code for one-dimensional flow with constant volume force Fv/ρ0c
2
0 = 0.01. Com-

parison between simulation data: velocity (�), pressure (�), density (N) and analytical results ( )
plotted as a function of the reduced downstream coordinate x. Quantities are non-dimensionalized
by their values for x = 0.

length-scale ratio lt/δ
0
l comparing the turbulent integral length scale and the laminar

flame thickness remains to be investigated. Then, a modified criterion will need to
be derived to delineate between counter-gradient and gradient turbulent diffusion. In
fact, counter-gradient diffusion may occur in most practical applications, especially
for ducted flames.
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Appendix. Tests with constant force or acceleration
To validate the implementation of volume forces in the simulation, simple examples

of one-dimensional flows with constant force or acceleration have been run. We
consider an isentropic one-dimensional flow submitted to a force Fv; Fv is either
constant or equal to ργ. The governing equations are

∂(ρu)

∂x
= 0,

∂(ρu2 + p)

∂x
= F.

For constant volume force Fv , F is constant and equal to Fv and for constant
acceleration, F = ρΓ .

This system is integrated once to give

ρu = ρ0u0,

∂u

∂x
= − u0

c2
oρ0

F

(u0/u)γ+1(1−M2
0 (u/u0)γ+1)

where index 0 designates the inlet condition. M0 = u0/c0 is the inlet Mach number
and γ = 1.4.

If the Mach number M0 is small, this system may be integrated easily to give:
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for constant volume force Fv:

u(x) = u0

(
1− Fvx

P0

)−1/γ

, ρ(x) = ρ0

(
1− Fvx

P0

)1/γ

, P (x) = P0 − Fvx;

note that ∂P/∂x = −Fv;
for constant acceleration Γ :

u(x) = u0

(
1 +

(γ − 1)Γx

c2
0

)−1/(γ−1)

,

ρ(x) = ρ0

(
1 +

(γ − 1)Γx

c2
0

)1/(γ−1)

,

P (x) = P0

(
1 +

(γ − 1)Γx

c2
0

)γ/(γ−1)

where c0 is the inlet sound speed (c0 = γP0/ρ0).
For small values of Γ , ∂P/∂x = ρ0Γ .
Figure 21 shows (for a constant volume force Fv/ρ0c

2
0 = 0.01) that the simulation

results match these analytical expressions well. (A similar agreement is obtained in
the case of a constant acceleration.)

REFERENCES

Batchelor, G. K. 1967 Introduction to Fluid Dynamics. Cambridge University Press.

Bray, K. N. C. 1980 Turbulent flows with premixed reactants. In Turbulent Reacting Flows (ed.
P. A. Libby & F. A. Williams). Topics in Applied Physics, vol. 44, pp. 115–183. Springer.

Bray, K. N. C. 1990 Studies of the turbulent burning velocity. Proc. R. Soc. Lond. A 431, 315–335.

Bray, K. N. C., Champion, M. & Libby, P. A. 1989 The interaction between turbulence
and chemistry in premixed turbulent flames. In Turbulent Reactive Flows (ed. R. Borghi
& S. N. B. Murthy). Lecture Notes in Engineering, vol. 40, pp. 541–563. Springer.

Bray, K. N. C., Libby, P. A., Masuya, G. & Moss, J. B. 1981 Turbulence production in premixed
turbulent flames. Combust. Sci. Tech. 25, 127–140.

Bray, K. N. C., Moss, J. B. & Libby, P. A. 1982 Turbulence transport in premixed turbulent flames.
In Convective Transport and Instability Phenomena (ed. J. Zierep & H. Oertel). University of
Karlsruhe, Germany.

Chomiak, J. & Nisbet, J. R. 1995 Modeling variable density effects in turbulent flames - some basic
considerations. Combust. Flame 102, 371–386.

Haworth, D. C. & Poinsot, T. 1992 Numerical simulations of Lewis number effects in turbulent
premixed flames. J. Fluid Mech. 244, 405–436.

Libby, P. A. 1989 Theoretical analysis of the effect of gravity on premixed turbulent flames. Combust.
Sci. Tech. 68, 15–33.

Libby, P. A. & Bray, K. N. C. 1981 Countergradient diffusion in premixed turbulent flames. AIAA
J. 19, 205–213.

Masuya, G. & Libby, P. A. 1981 Nongradient theory for oblique turbulent flames with premixed
reactants. AIAA J. 19, 1590–1599.

Moss, J. B. 1980 Simultaneous measurements of concentration and velocity in an open premixed
turbulent flame. Combust. Sci. Tech. 22, 119–129.

Poinsot, T. & Lele, S. K. 1992 Boundary conditions for direct simulations of compressible viscous
flows. J. Comput. Phys. 101, 104–129.

Poinsot, T., Veynante, D. & Candel, S. M. 1991 Quenching processes and premixed turbulent
combustion diagrams. J. Fluid Mech. 228, 561–605.

Rutland, C. J. & Cant, R. S. 1994 Turbulent transport in premixed flames. In Proc. Summer
Program. Center for Turbulence Research, NASA Ames/Stanford University.



114 D. Veynante and T. Poinsot

Shepherd, I. G., Moss, J. B. & Bray, K. N. C. 1982 Turbulent transport in a confined premixed
flame. In Nineteenth Symp. (Intl) on Combustion, pp. 423–431. The Combustion Institute.
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